Convex \operatorname{SO}(N)\times \operatorname{SO}(n)-invariant functions and refinements of von Neumann’s inequality
نویسندگان
چکیده
منابع مشابه
Convex SO(N)× SO(n)-invariant Functions and Refinements of Von Neumann’s Inequality
A function f : Mn(R)→ [−∞,∞] is said to be SO(n)× SO(n)-invariant if ∀ξ ∈Mn(R), ∀Q,R ∈ SO(n), f(QξR) = f(ξ). The specification of an SO(n)× SO(n)-invariant function f is easily seen to be equivalent to that of a function g : R → R which is invariant under ∗EPFL, CH-1015 Lausanne, Switzerland. Email: [email protected]. †Université Paul Sabatier, F-31062 Toulouse cedex 4, France. Email: m...
متن کاملJENSEN’S INEQUALITY FOR GG-CONVEX FUNCTIONS
In this paper, we obtain Jensen’s inequality for GG-convex functions. Also, we get in- equalities alike to Hermite-Hadamard inequality for GG-convex functions. Some examples are given.
متن کاملAn inequality related to $eta$-convex functions (II)
Using the notion of eta-convex functions as generalization of convex functions, we estimate the difference between the middle and right terms in Hermite-Hadamard-Fejer inequality for differentiable mappings. Also as an application we give an error estimate for midpoint formula.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Annales de la faculté des sciences de Toulouse Mathématiques
سال: 2007
ISSN: 0240-2963
DOI: 10.5802/afst.1139